Upregulation of thrombospondin-1 expression by leptin in vascular smooth muscle cells via JAK2- and MAPK-dependent pathways.
نویسندگان
چکیده
Hyperleptinemia, characteristic of diabetes and a hallmark feature of human obesity, contributes to the increased risk of atherosclerotic complications. However, molecular mechanisms mediating leptin-induced atherogenesis and gene expression in vascular cells remain incompletely understood. Accumulating evidence documents a critical role of a potent antiangiogenic and proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in atherosclerosis. Although previous studies reported elevated TSP-1 levels in both diabetic and obese patients and rodent models, there is no direct information on TSP-1 expression in vascular cells in response to leptin. In the present study, we show that leptin upregulates TSP-1 expression in cultured human aortic smooth muscle cells (HASMC) in vitro, and this increase occurs at the level of transcription, revealed by mRNA stability and TSP-1 promoter-reporter assays. Utilizing specific pharmacological inhibitors and siRNA approaches, we demonstrate that upregulation of TSP-1 expression by leptin is mediated by JAK2/ERK/JNK-dependent mechanisms. Furthermore, we report that while ERK and JNK are required for both the constitutive and leptin-induced expression of TSP-1, JAK-2 appears to be specifically involved in leptin-mediated TSP-1 upregulation. Finally, we found that increased HASMC migration and proliferation in response to leptin is significantly inhibited by a TSP-1 blocking antibody, thereby revealing the physiological significance of leptin-TSP-1 crosstalk. Taken together, these findings demonstrate, for the first time, that leptin has a direct regulatory effect on TSP-1 expression in HASMCs, underscoring a novel role of TSP-1 in hyperleptinemia-induced atherosclerotic complications.
منابع مشابه
Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملThe Effect of Adiponectin on Osteonectin Gene Expression by Oxidized Low Density Lipoprotein-Treated Vascular Smooth Muscle Cells
Osteonectin is a bone- associated protein involved in vascular calcification. Adiponectin may protect against cardiovascular disease but possible effects on vascular calcification have been poorly studied. The aim of this study was to investigate the modulatory effect of adiponectin on oxidized low density lipoprotein (oxLDL)- induced expression of osteonectin in human aorta vascular smooth mus...
متن کاملThe inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism.
Leptin inhibits the contractile response induced by angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) of the aorta. We studied in vitro and ex vivo the role of nitric oxide (NO) in the effect of leptin on the Ang II-induced vasoconstriction of the aorta of 10-wk-old Wistar rats. NO and nitric oxide synthase (NOS) activity were assessed by the Griess and (3)H-arginine/citrulline conve...
متن کاملLeptin augments recruitment of IRF-1 and CREB to thrombospondin-1 gene promoter in vascular smooth muscle cells in vitro.
We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the...
متن کاملMolecular interactions of serotonin (5-HT) and endothelin-1 in vascular smooth muscle cells: in vitro and ex vivo analyses.
Elevated levels of serotonin (5-HT) and endothelin-1 (ET-1) may be involved in cardiovascular complications of diabetes mellitus. Data suggest supraphysiological concentrations of 5-HT (10(-6) M) potentiate the ability of ET-1 to stimulate DNA synthesis and vascular smooth muscle cell (VSMC) proliferation in vitro via activation of mitogen-activated protein kinase (p42/44 MAPK) and Janus kinase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 303 2 شماره
صفحات -
تاریخ انتشار 2012